Question: Blocksworld Task: Initial State: stackl: D stack2: G C A F
stack3: B I E H Goal State: stackl: A F H stack2: C G I stack3: B D E
Please provide a series of moves to reach the goal state. Your answer:

SteerLLM Guidance 1: Solve the following question using your coding
skills. Suggest python code (in a python coding block) for the user to
execute. You can first output your thinking steps with texts and then

the final python code. Start the python block with "~ "python

TaskLLM Answer 1l: To solve the Blocksworld task, we need to move
blocks from their initial positions to match the goal ..<omitted text>..

" python
moves = [
"Move D from stackl to stack3",
"Move F from stack?2 to stackl",
"Move A from stack?2 to stackl",
"Move H from stack3 to stackl",
"Move I from stack3 to stack2",
"Move E from stack3 to stack2"
|

prl’nt(ll<<<ll
for move in moves:
print(move)
prl’nt(ll>>>ll

SteerLLM Guidance 2: To improve the solution, consider implementing
a more sophisticated algorithm that can handle the constraints of the
Blocksworld task. Use symbolic computing or an efficient search
algorithm, such as Ax or depth-first search, to explore possible moves
and find a valid sequence that achieves the goal state ..

TaskLLM Answer 2: To solve the Blocksworld task using a more
sophisticated algorithm, we can implement a depth-first search (DFS)
approach ..<omitted text>..

" “python
def is_goal_state(state, goal_state):
return state == goal_state

def get_possible_moves(state):
moves = []

for 1, stack in enumerate(state):
1f stack: # If the stack 1is not empty

block = stack[-1] # Get the top block

for j in range(len(state)):

i1f 1 != j: # Move to a different stack

new_state = [list(s) for s in state] # Deep copy of the state
new_state[i].pop() # Remove the block from the current stack
new_state[j].append(block) # Add the block to the new stack
moves.append((new_state, f"Move {block} from stack{i+1} to
stack{j+1}"))

return moves

..<omitted code>..

SteerLLM Guidance 3: The current approach using depth-first search
(DFS) is a step in the right direction, but it seems to be
inefficient, leading to a timeout. Consider optimizing the search
algorithm by implementing a more efficient search strategy, such as Ax
search, which uses heuristics to prioritize moves that are more likely
to lead to the goal state. Additionally, ensure that the state
representation and move generation ..<omitted code>..

TaskLLM Answer 3: To optimize the search for a solution in the
Blocksworld task, we can implement the Ax search algorithm. Ax search
is more efficient than DFS ..<omitted text>..

" “python

import heapq

def heuristic(state, goal_state):
misplaced_blocks = 0

for stack, goal_stack in zip(state, goal_state):
for block, goal_block in zip(stack, goal_stack):
if block != goal_block:

misplaced_blocks += 1

return misplaced_blocks

def is_goal_state(state, goal_state):
return state == goal_state

def get_possible_moves(state): ¢ 0
moves = []

for 1, stack in enumerate(state):

1f stack: # If the stack is not empty
block = stack[-1] # Get the top block
for j in range(len(state)):

if 1 != j: # Move to a different stack
new_state = [list(s) for s in state] # Deep copy of the state
new_state[i].pop() # Remove the block from the current stack
new_state[j].append(block) # Add the block to the new stack
moves.append((tuple(tuple(s) for s in new_state), f"Move {block} from
stack{i+1} to stack{j+1}"))

return moves

def a_star_search(initial_state, goal_state):
open_set = []

heapq.heappush(open_set, (0, initial_state, []))
visited = set()

.<omitted code>..

SteerLLM Guidance 4: Return Answer




